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Abstract We discuss some basic aspects of the dynamics of a homogenous Fermi gas in a
weak random potential, under negligence of the particle pair interactions. We derive the ki-
netic scaling limit for the momentum distribution function with a translation invariant initial
state and prove that it is determined by a linear Boltzmann equation. Moreover, we prove
that if the initial state is quasifree, then the time evolved state, averaged over the random-
ness, has a quasifree kinetic limit. We show that the momentum distributions determined
by the Gibbs states of a free fermion field are stationary solutions of the linear Boltzmann
equation; this includes the limit of zero temperature.

Keywords Fermi gas · Quantum dynamics in random medium · Boltzmann limit ·
Quasifreeness

1 Introduction

We investigate the Boltzmann limit for the dynamics of a quantized field of non-relativistic
electrons in a disordered medium. The analysis presented here is closely related to the
derivation of Boltzmann equations from the quantum dynamics of the one-particle Ander-
son model at weak disorders, and involves techniques developed in [9–11, 13, 14] and [7,
8]; see also [19, 21]. We refer also to [1, 5, 6, 18, 20] for related works.

We consider a gas of fermions on the lattice �L := [−L
2 , L

2 ]d ∩ Z
d in dimension d ≥ 3

and with periodic boundary conditions, for L � 1. We denote the dual lattice by �∗
L =

�L/L, and write
∫

dp ≡ 1
Ld

∑
p∈�∗

L
for brevity. Letting F = ⊕

n≥0

∧n

1 �2(�L) denote the
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Fock space accounting for scalar fermions on �L, we denote the creation- and annihilation
operators by a+

p , ap , with p ∈ �∗
L, satisfying the usual canonical anticommutation relations.

Let A denote the C∗-algebra of bounded operators on F. We let ρ0 denote a translation in-
variant, normalized state on A, which preserves the particle number (i.e., ρ0(NA) = ρ0(AN)

for all A ∈ A, where N = ∑
x a+

x ax is the number operator).
We consider the Hamiltonian

Hω :=
∫

dpE(p)a+
p ap + ηVω (1.1)

which generates the dynamics of a free Fermi gas coupled to a random potential

Vω :=
∑

x∈�L

ωxa
+
x ax, (1.2)

where {ωx}x∈�L
are real Gaussian i.i.d. random variables, and 0 < η � 1 is a small coupling

constant accounting for the disorder strength. We assume that the kinetic energy function is
given by

E(p) =
d∑

j=1

cos(2πpj ), (1.3)

i.e., the Fourier multiplication operator determined by the centered nearest neighbor Lapla-
cian (�f )(x) = ∑

|y−x|=1 f (y) on Z
d .

We are interested in the long-time dynamics of the fermion field described by

ρt (A) := ρ0(e
itHωAe−itHω ), (1.4)

where A ∈ A. While we are neglecting the pair interactions between the electrons, the ef-
fective interaction between the particles through their coupling to the random potential, and
due to the Pauli principle remain significant. We prove the following. In a time scale t = T

η2

where T > 0 denotes a macroscopic time variable, we find, in the thermodynamic limit, that
for all T > 0 and for all test functions f , g of Schwartz class S(Td),

	
(2)
T (f ;g) := lim

η→0
lim

L→∞
E[ρT/η2(a+(f )a(g))] =

∫

Td

dpFT (p)f (p)g(p), (1.5)

where FT (p) satisfies the linear Boltzmann equation

∂T FT (p) = 2π

∫
duδ(E(u) − E(p))(FT (u) − FT (p)) (1.6)

with initial condition F0(p) = limL→∞ 1
Ld ρ0(a

+
p ap). The proof is based on a generalization

of methods due to Erdös and Yau in [11], and extended in [7], for the derivation of linear
Boltzmann equations from the random Schrödinger dynamics in the weakly disordered 1-
particle Anderson model.

We observe that if ρ0 is the Gibbs distribution of the free fermion field, the corresponding
momentum occupation density (the Fermi-Dirac distribution)

F0(p) = 1

1 + eβ(E(p)−μ)
, (1.7)
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for inverse temperature β and chemical potential μ, is a stationary solution of the linear
Boltzmann equation (1.6), for all β > 0. This is also valid in the zero temperature limit
β → ∞ where in the weak sense,

1

1 + eβ(E(p)−μ)
→ χ [E(p) < μ], (1.8)

which is nontrivial if μ > 0. Erdös, Salmhofer and Yau have proved in their landmark work
[10, 13, 14] that for a time t beyond the kinetic scale η−2, the effective dynamics of a single
electron is diffusive; i.e., in this time scale, a wave packet evolves in position space according
to the solution of a heat equation. Accordingly, we expect the Fermi-Dirac distribution to
remain a stationary solution in the diffusive limit, and for the corresponding time scale
addressed in [10, 13, 14].

We remark that the translation invariant model without the random potential (i.e., η = 0)
but including the full repulsive particle pair interaction is determined by the Hamiltonian

H̃λ :=
∫

dpE(p)a+
p ap + λ

∑

x,y∈�L

a+
y a+

x v(x − y)axay. (1.9)

It is widely believed that in a time scale t = T

λ2 , the momentum density FT (p) :=
limλ→0 limL→∞ 1

Ld ρT/λ2(a+
p ap) for the dynamics generated by H̃λ satisfies the Boltzmann-

Uhlenbeck-Uehling equation

∂T FT (p) = −4π

∫
dp1dp2dq1dq2 |̂v(p1 − q1) − v̂(p1 − q2)|2δ(p − p1)

× δ(p1 + p2 − q1 − q2)δ(E(p1) + E(p2) − E(q1) − E(q2))

×
[
FT (p1)FT (p2)F̃T (q1)F̃T (q2) − FT (q1)FT (q2)F̃T (p1)F̃T (p2)

]
,

where F̃T (p) := 1 − FT (p). The derivation of (1.10) from the microscopic quantum dy-
namics is an extremely challenging open problem; for some work in this direction, see [4,
12, 16, 17, 22]. We note that (1.7) is also an equilibrium solution of (1.10), which is ealily
seen by noting that F̃0(p) = eβ(E(p)−μ)F0(p). This is a consequence of the circumstance that
(1.7) is a function of the kinetic energy E(p) which is a collision invariant in both (1.6) and
(1.10). As a matter of fact, any distribution of the form f (E(p)) is stationary for (1.6); on
the other hand, the special structure of (1.7) is necessary for it to be a stationary solution of
(1.10). For a combined Boltzmann limit of the coupled model with λ,η > 0 (which is an
open problem) we conjecture that the kinetic energy E(p) will remain a collision invariant,
and that the momentum distribution (1.7) will remain a stationary solution of the resulting
Boltzmann equation, at least in a regime η ≤ O(λ).

A contextually related question is the one addressing the stability of the Fermi sea for a
gas of interacting fermions. This is an important problem in mathematical physics which has
in recent years received much attention, especially due to the landmark works of Feldman,
Knörrer, and Trubowitz summarized in [15].

An additional goal of the present work is to investigate the effective correlation between
the electrons due to their interaction with the random potential. To this end, we assume that
ρ0 is number preserving, homogenous, and quasifree. That is, for any tuple of test functions
f1, . . . , fr , g1, . . . , gs ,

ρ0(a
+(f1) · · ·a+(fr)a(g1) · · ·a(gs)) = δr,s det[ρ0(a

+(fj )a(g�))]rj,�=1. (1.10)
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We consider the dynamics generated by Hω , and observe that since Hω is bilinear in a+, a,
the time evolved state ρt is almost surely quasifree. However, the state averaged over the
randomness is not quasifree,

lim
L→∞

E[ρt (f1, . . . , fr;g1, . . . , gr )] �= det
[

lim
L→∞

E[ρt (fj ;g�)]
]r

j,�=1
, (1.11)

for any t > 0 if η > 0. This is not surprising because quasifreeness is a nonlinear condition.
We prove that in the kinetic scaling limit stated above, the limiting 2r-correlation functions
are quasifree,

	
(2r)
T (f1, . . . , fr ;g1, . . . , gr )

:= lim
η→0

lim
L→∞

E[ρT/η2(a+(f1) · · ·a+(fr)a(g1) · · ·a(g2))]

= det[	(2)
T (fj ;g�)]rj,�=1, (1.12)

for any r ∈ N. The proof is based on an extension of the proof in [8] for the 1-particle An-
derson model at weak disorders that the random Schrödinger evolution converges in arbi-
trary higher mean to a linear Boltzmann evolution. Quasifreeness of the 2r-point correlation
functions is a significant ingredient in some approaches to the problem of quantum charge
transport; see for instance [2] and the references therein.

2 Definition of the Model

We give a detailed definition of the mathematical model described in the previous section.
We consider a fermion gas in a finite box �L := [−L

2 , L
2 ]d ∩ Z

d of side length L � 1, with
periodic boundary conditions, in dimensions d ≥ 3. We denote its dual lattice by �∗

L :=
�L/L ⊂ T

d . For the Fourier transform, we use the convention

f̂ (p) :=
∑

x∈�L

e−2πip·xf (x), (2.1)

where p ∈ �∗
L, and

f (x) = 1

Ld

∑

p∈�∗
L

e2πip·x f̂ (p) (2.2)

for its inverse. For brevity, we will use the notation

∫
dp ≡ 1

Ld

∑

p∈�∗
L

(2.3)

in the sequel, which recovers its usual meaning in the thermodynamic limit L → ∞.
We denote the fermionic Fock space of scalar electrons by

F =
⊕

n≥0

Fn, (2.4)
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where

F0 = C, Fn =
n∧

1

�2(�L), n ≥ 1. (2.5)

We introduce creation- and annihilation operators a+
p , aq , for p, q ∈ �∗

L, satisfying the
canonical anticommutation relations

a+
p aq + aqa

+
p = δ(p − q) :=

{
Ld if p = q

0 otherwise.
(2.6)

We define the fermionic manybody Hamiltonian

Hω := T + ηVω, (2.7)

where

T =
∫

dpE(p)a+
p ap (2.8)

is the kinetic energy operator, and

Vω :=
∑

x∈�L

ωxa
+
x ax (2.9)

couples the fermions to a static random potential; {ωx}x∈�L
is a field of i.i.d. real-valued

random variables which we assume to be centered, normalized, and Gaussian for simplicity.
Thus,

E[ωx] = 0, E[ω2
x] = 1 (2.10)

for all x ∈ �L. Moreover, we assume that

E(p) =
d∑

j=1

cos(2πpj ), (2.11)

which defines the Fourier multiplier corresponding to the nearest neighbor Laplacian on Z
d .

Let

N :=
∑

x∈�L

a+
x ax (2.12)

denote the particle number operator. It is clear that

[Hω,N ] = 0 (2.13)

holds.
Let A denote the C∗-algebra of bounded operators on F. We consider the dynamics on A

given by

αt (A) = eitHωAe−itHω (2.14)

generated by the random Hamiltonian Hω .
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3 Statement of the Main Results

We consider a normalized, translation-invariant, deterministic state

ρ0 : A −→ C. (3.1)

We define the time-evolved state

ρt (A) := ρ0(e
itHωAe−itHω ), (3.2)

with t ∈ R, and initial condition given by ρ0. We particularly focus on the dynamics of the
averaged two-point functions

E[ρt (a
+
p aq)], (3.3)

where p,q ∈ �∗
L. Clearly,

E[ρ0(a
+
p aq)] = ρ0(a

+
p aq) = δ(p − q)

1

Ld
ρ0(a

+
p ap), (3.4)

where

δ(k) := Ldδk, (3.5)

and where

δk =
{

1 if k = 0
0 otherwise

(3.6)

denotes the Kronecker delta on the lattice �∗
L (mod T

d ). We remark that for fermions,

0 ≤ 1

Ld
ρ0(a

+
p ap) ≤ 1, (3.7)

since ‖a(+)
p ‖ = Ld/2 in operator norm, ∀p ∈ �∗

L.

3.1 The Boltzmann Limit

We denote the microscopic time, position, and velocity variables by (t, x,p), and the corre-
sponding macroscopic variables by (T ,X,V ) = (η2t, η2x, v). We prove that the momentum
distribution ft (q) converges to a solution of a linear Boltzmann equation in the limit η → 0.

Theorem 3.1 We assume that ρ0 is translation invariant. Then, the averaged two-point func-
tions are translation invariant,

E[ρt (a
+(f )a(g))] =

∫
dpf (p)g(p)E[ρt (a

+
p ap)] (3.8)

(i.e., diagonal in a+
p , ap) for any f,g ∈ S(Td) of Schwartz class, and the thermodynamic

limit

	
(2;η)

T (f ;g) := lim
L→∞

E[ρT/η2(a+(f )a(g))] (3.9)
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exists for all f,g ∈ S(Td), and T > 0.
For any T > 0 and all f,g ∈ S(Td), the limit

	
(2)
T (f ;g) := lim

η→0
	

(2;η)

T (f ;g) (3.10)

exists, and is the inner product of f,g with respect to a Borel measure FT (p)dp,

	
(2)
T (f ;g) =

∫
dpFT (p)f (p)g(p), (3.11)

where FT (V ) satisfies the linear Boltzmann equation

∂T FT (V ) = 2π

∫

Td

dUδ(E(U) − E(V ))(FT (U) − FT (V )), (3.12)

with initial condition

F0(p) = lim
L→∞

1

Ld
ρ0(a

+
p�∗

L

ap�∗
L

) (3.13)

for p ∈ T
d , where p�∗

L
:= Q 1

2L
(p) ∩ �∗

L, and Qδ(p) := p + [−δ, δ)d .

We note that there exists a unique p�∗
L

∈ �∗
L such that |p −p�∗

L
| ≤ 1

2L
, for every p ∈ T

d .
An initial condition of particular interest is the Gibbs state (with inverse temperature β

and chemical potential μ) for a non-interacting fermion gas,

ρ0(A) = 1

Zβ,μ

Tr(e−β(T −μN)A) (3.14)

where Zβ,μ := Tr(e−β(T −μN)). The corresponding momentum distribution function

lim
L→∞

1

Ld
ρ0(a

+
p ap) = 1

1 + eβ(E(p)−μ)
(3.15)

is a stationary solution of the linear Boltzmann equation (3.12), for all β > 0. This also
holds in the zero temperature limit β → ∞ where in the weak sense,

1

1 + eβ(E(p)−μ)
→ χ [E(p) < μ], (3.16)

which is nontrivial if μ > 0. We note that all our results in this paper remain valid in the
limit β → ∞.

3.2 Quasifreeness

We prove that if in addition to the conditions formulated above, the initial state ρ0 is qua-
sifree, then E[ρt ], which is not quasifree for any t > 0 if η > 0, becomes quasifree in the
kinetic scaling limit of Theorem 3.1.

A state ρ0 is quasifree if for any normal ordered product of creation- and annihilation
operators

a+
p1

· · ·a+
pr

aq1 · · ·aqs , (3.17)
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with arbitrary r, s ∈ N and pi, qj ∈ �∗
L,

ρ0(a
+
p1

· · ·a+
pr

aq1 · · ·aqs ) = δr,s det
[
ρ0(a

+
pi

aqj
)
]

1≤i,j≤r
. (3.18)

That is, any higher order correlation function decomposes into the determinant of the matrix
of pair correlations. In its most general form, a particle number conserving quasifree state
ρ0 : A → C can be written as

ρ0(A) := 1

ZK

Tr(e−KA) (3.19)

for A ∈ A, with

ZK := Tr(e−K), (3.20)

and

K =
∫

dpdqκ(p,q)a+
p aq (3.21)

bilinear in a+
p , aq ; for a proof, see [3]. We assume K to be deterministic (with respect

to {ωx}x ).
If in addition, translation invariance is imposed, such that

[K,T ] = 0 (3.22)

then

K =
∫

dph(p)a+
p ap (3.23)

is bilinear and diagonal in a+
p , ap .

Since Hω is bilinear in the creation- and annihilation operators, it is immediately clear
that

K(t) := eitHωKe−itHω (3.24)

is also bilinear in a+
p , aq . Therefore,

ρt (A) = 1

ZK

Tr(e−K(t)A) (3.25)

is quasifree with probability 1. However, since quasifreeness is a nonlinear condition on
determinants, almost sure quasifreeness does not imply that E[ρt (·)] is quasifree.

In fact, E[ρt (·)] is not quasifree for any t > 0.
However, we prove in Theorem 3.2 below that it possesses a kinetic scaling limit (in the

sense of Theorem 3.1) which is quasifree.

Theorem 3.2 Assume that ρ0 is number conserving and quasifree, and translation invari-
ant. Then, the following holds. For any normal ordered monomial in creation- and annihi-
lation operators,

a+(f1) · · ·a+(fr)a(g1) · · ·a(gr), (3.26)
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with r, s ∈ N and Schwartz class test functions fj , g� ∈ S(Td), and any T > 0, the macro-
scopic 2r-point function

	
(2r)
T (f1, . . . , fr;g1, . . . , gr )

:= lim
η→0

lim
L→∞

E[ρT/η2(a+(f1) · · ·a+(fr)a(g1) · · ·a(gr))] (3.27)

exists and is quasifree,

	
(2r)
T (f1, . . . , fr;g1, . . . , gr) = det

[
	

(2)
T (fi, gj )

]
1≤i,j≤r

. (3.28)

The macroscopic 2-point function is the same as in Theorem 3.1,

	
(2)
T (f ;g) =

∫
dpFT (p)f (p)g(p), (3.29)

and FT (p) solves the linear Boltzmann equation (3.12) with initial condition (3.13).

We note that the assumption of translation invariance can easily be dropped. However,
we do not address inhomogenous Fermi gases in this text.

4 Proof of Theorem 3.1

The proof of Theorem 3.1 is obtained from an extension of the analysis in [7, 11].

4.1 Duhamel Expansion

We consider the Heisenberg evolution of the creation- and annihilation operators. We define

ap(t) := eitHωape−itHω , (4.1)

and

a(f, t) := eitHωa(f )e−itHω . (4.2)

We make the key observation that

a(f, t) = a(ft ) (4.3)

where ft is the solution of the 1-particle random Schrödinger equation

i∂tft = H(1)
ω ft := �ft + ηV (1)

ω ft (4.4)

with initial condition

f0 = f. (4.5)

Here, � denotes the nearest neighbor Laplacian on �L, and H(1)
ω = Hω|F1 is the 1-particle

Anderson Hamiltonian at weak disorders studied in [7, 8, 11]. V (1)
ω = Vω|F1 is the 1-particle

multiplication operator (V (1)
ω f )(x) = ωxf (x).
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To prove (4.4), (4.5), we observe that since Hω is bilinear in a+, a, it follows that a(f, t)

is a linear superposition of annihilation operators. Therefore, there exists a function ft such
that a(f, t) = a(ft ). In particular,

i∂ta(ft ) = [Hω,a(ft )]
=

∫
dpft (p)E(p)ap + η

∫
dp

∫
duft (p)ω̂(u − p)au

= a(�ft ) + a(ηV (1)
ω ft ), (4.6)

and moreover, it is clear that a(f,0) = a(f0) = a(f ). This implies (4.4), (4.5).
Thus,

ρt (a
+(f )a(g)) = ρ0(a

+(ft )a(gt ))

=
∫

dpdqρ0(a
+
p aq)ft (p)gt (q)

=
∫

dpJ (p)ft (p)gt (p), (4.7)

where

ρ0(a
+
p aq) = δ(p − q)J (p) (4.8)

due to translation invariance, with

0 ≤ J (p) = 1

Ld
ρ0(a

+
p ap) = 1

1 + eh(p)
≤ 1, (4.9)

cf. (3.7); see (3.23) for the definition of h(p). In particular, this implies (3.8).
For N ∈ N, which we determine later, we expand ft , gt into the truncated Duhamel series

at level N ,

ft = f
(≤N)
t + f

(>N)
t , (4.10)

with

f
(≤N)
t :=

N∑

n=0

f
(n)
t , (4.11)

and where the Duhamel term of n-th order (in powers of η) is given by

f
(n)
t (p) := (iη)n

∫
ds0 · · ·dsnδ

(

t −
n∑

j=0

sj

)

×
∫

dk0 · · ·dknδ(p − k0)

(
n∏

j=0

eisj E(kj )

)(
n∏

j=1

ω̂(kj − kj−1)

)

f (kn) (4.12)

= ηneεt

∫
dαeitα

∫
dk0 · · ·dknδ(p − k0)

×
(

n∏

j=0

1

E(kj ) − α − iε

)
( n∏

j=1

ω̂(kj − kj−1)
)
f (kn). (4.13)
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The remainder term is given by

f
(>N)
t = iη

∫ t

0
ds ei(t−s)HωV (1)

ω f
(N)
t (s). (4.14)

We choose

ε = 1

t
(4.15)

so that the factor eεt remains bounded for all t . Accordingly,

ρt (a
+(f )a(g)) = ρ0(a

+(ft )a(gt )) =
N+1∑

n,̃n=0

ρ
(n,̃n)
t (f ;g), (4.16)

where

ρ
(n,̃n)
t (f ;g) := ρ0(a

+(f
(n)
t )a(g

(̃n)
t )) (4.17)

if n, ñ ≤ N , and

ρ
(n,N+1)
t (f ;g) := ρ0(a

+(f
(n)
t )a(g

(>N)
t )),

(4.18)
ρ

(N+1,̃n)
t (f ;g) := ρ0(a

+(f
(>N)
t )a(g

(̃n)
t ))

if n ≤ N , respectively if ñ ≤ N , and

ρ
(N+1,N+1)
t (f ;g) := ρ0(a

+(f
(>N)
t )a(g

(>N)
t )). (4.19)

In particular, for n, ñ ≤ N ,

ρ
(n,̃n)
t (f ;g) = ηn+ñe2εt

∫
dα dα̃ eit (α−α̃)

×
∫

dk0 · · ·dkn

∫
dk̃0 · · ·dk̃ñf (kn)g(̃kñ)J (k0)δ(k0 − k̃0)

×
n∏

j=0

1

E(kj ) − α − iε

n∏

�=0

1

E(̃k�) − α̃ + iε

×
n∏

j=1

ω̂(kj − kj−1)

n∏

�=1

ω̂(̃k�−1 − k̃�). (4.20)

This expression, and the expressions involving n and / or ñ = N + 1, are completely anal-
ogous to those appearing in the truncated Duhamel expansion of the Wigner transform in
[7, 11].

This permits us to use the methods of [7, 11] to prove Theorem 3.1. We will here only
sketch the strategy; for the detailed proof, we refer to [7, 11]. In our subsequent discussion,
we will compare the expressions appearing in the given problem to those treated in [7, 11].

To begin with, we introduce a more convenient notation. Clearly, if n, ñ ≤ N , and n + ñ

is odd, E[ρ(n,̃n)
t (p, q)] = 0. Thus, we let

n̄ := n + ñ

2
∈ N, (4.21)
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and we define {uj }2n̄+1
j=0 by

uj :=
{

kn−j if j ≤ n

k̃j−n−1 if j ≥ n + 1.
(4.22)

Consequently,

E[ρ(n,̃n)
t (f ;g)] = η2n̄e2εt

∫
dαdα̃eit (α−α̃)

×
∫

du0 · · ·du2n̄+1f (u0)g(u2n̄+1)J (un)δ(un − un+1)

×
n∏

j=0

1

E(uj ) − α − iε

2n̄+1∏

�=n+1

1

E(u�) − α̃ + iε

× E

[
n∏

j=1

ω̂(uj − uj−1)

2n̄+1∏

j=n+2

ω̂(uj − uj−1)

]

(4.23)

in these new variables, where we use that ω̂(u)∗ = ω̂(−u).

4.2 Graph Expansion

Next, we take the expectation with respect to the random potential. To this end, we introduce
the set of Feynman graphs �n,̃n, with n + ñ ∈ 2N, as follows.

We consider two horizontal solid lines, which we refer to as particle lines, joined
by a distinguished vertex which we refer to as the ρ0-vertex (corresponding to the term
ρ0(a

+
un

aun+1)). On the line on its left, we introduce n vertices, and on the line on its right,
we insert ñ vertices. We refer to those vertices as interaction vertices, and enumerate them
from 1 to 2n̄ starting from the left. The edges between the interaction vertices are referred
to as propagator lines. We label them by the momentum variables u0, . . . , u2n̄+1, increas-
ingly indexed starting from the left. To the j -th propagator line, we associate the resol-
vent 1

E(uj )−α−iε
if 0 ≤ j ≤ n, and 1

E(uj )−α̃+iε
if n + 1 ≤ j ≤ 2n̄ + 1. To the �-th interaction

vertex (adjacent to the edges labeled by u�−1 and u�), we associate the random potential
ω̂(u� − u�−1), where 1 ≤ � ≤ 2n̄ + 1.

A contraction graph associated to the above pair of particle lines joined by the ρ0-vertex,
and decorated by n + ñ interaction vertices, is the graph obtained by pairwise connecting
interaction vertices by dashed contraction lines. We denote the set of all such contraction
graphs by �n,̃n; it contains

|�n,̃n| = (2n̄ − 1)(2n̄ − 3) · · ·3 · 1 = (2n̄)!
n̄!2n̄

= O(n̄!) (4.24)

elements.
If in a given graph π ∈ �n,̃n, the �-th and the �′-th vertex are joined by a contraction line,

we write

� ∼π �′, (4.25)

and we associate the delta distribution

δ(u� − u�−1 − (u�′ − u�′−1)) = E[ω̂(u� − u�−1)ω̂(u�′ − u�′−1)] (4.26)

to this contraction line.
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Fig. 1 An example of a Feynman graph, π ∈ �n,̃n, with n = 4, ñ = 6. The distinguished vertex is the
ρ0-vertex

4.3 Classification of Graphs

For the proof of Theorem 3.1, we classify Feynman graphs as follows; see [7, 11], and Fig. 1.

• A subgraph consisting of one propagator line adjacent to a pair of vertices � and � + 1,
and a contraction line connecting them, i.e., � ∼π � + 1, where both �, � + 1 are either
≤ n or ≥ n + 1, is called an immediate recollision.

• The graph π ∈ �n,n (i.e., n = ñ = n̄) with � ∼π 2n − � for all � = 1, . . . , n, is called a
basic ladder diagram. The contraction lines are called rungs of the ladder. We note that
a rung contraction always has the form � ∼π �′ with � ≤ n and �′ ≥ n + 1. Moreover, in
a basic ladder diagram one always has that if �1 ∼π �′

1 and �2 ∼π �′
2 with �1 < �2, then

�′
2 < �′

1.
• A diagram π ∈ �n,̃n is called a decorated ladder if any contraction is either an immediate

recollision, or a rung contraction �j ∼π �′
j with �j ≤ n and �′

j ≥ n for j = 1, . . . , k, and
�1 < · · · < �k , �′

1 > · · · > �′
k . Evidently, a basic ladder diagram is the special case of a

decorated ladder which contains no immediate recollisions (so that necessarily, n = ñ).
• A diagram π ∈ �n,̃n is called crossing if there is a pair of contractions � ∼π �′, j ∼π j ′,

with � < �′ and j < j ′, such that � < j .
• A diagram π ∈ �n,̃n is called nesting if there is a subdiagram with � ∼π �+2k, with k ≥ 1,

and either � ≥ n + 1 or � + 2k ≤ n, with j ∼π j + 1 for j = � + 1, � + 3, . . . , � + 2k − 1.
The latter corresponds to a progression of k − 1 immediate recollisions.

We note that any diagram that is not a decorated ladder contains at least a crossing or a
nesting subdiagram.

4.4 Feynman Amplitudes

Next, we average (4.20) with respect to the random potential. Accordingly, E[∏ ω̂(u� −
u�−1)] splits into the sum of all possible products of pair correlations, according to Wick’s
theorem (we recall that {ωx} are assumed to be i.i.d. Gaussian). This implies that

E[ρ(n,̃n)
t (f ;g)] =

∑

π∈�n,̃n

Ampπ (f ;g; ε;η) (4.27)

with

Ampπ (f ;g; ε;η) := η2n̄e2εt

∫
dαdα̃eit (α−α̃)

×
∫

du0 · · ·du2n̄+1f (u0)g(u2n̄+1)J (un)δ(un − un+1)δπ ({uj }2n̄+1
j=0 )

×
n∏

j=0

1

E(uj ) − α − iε

2n̄∏

�=n+2

1

E(u�) − α̃ + iε
, (4.28)



342 T. Chen, I. Sasaki

and ε = 1
t
. Here,

δπ ({uj }2n̄+1
j=0 ) :=

∏

�∼π �′
δ(u� − u�−1 − (u�′ − u�′−1)) (4.29)

is the product of the delta distributions associated to all contraction lines in π . Moreover,
we recall that

δ(un − un+1)J (un) = ρ0(a
+
un

aun+1), (4.30)

see (4.8). We note that

u0 − u2n̄+1 = 0, (4.31)

as one easily sees by summing up the arguments of all delta distributions. This holds for
any n, ñ and again implies (3.8).

We observe that the rôle of (4.30) in (4.28) is analogous to that of the rescaled Schwartz
class function Jε in [7, 11], and that the test functions f , g here correspond to the initial
state φ̂0 in [7, 11].

4.5 Contribution from Crossing and Nesting Diagrams

The amplitude of any graph π ∈ �n,̃n that contains either a crossing or a nesting can be
estimated by

lim
L→∞

|Ampπ (f ;g; ε;η)| ≤ ‖f ‖2‖g‖2‖J‖∞ε1/5

(

log
1

ε

)4(

cη2ε−1 log
1

ε

)n̄

, (4.32)

see [7, 11]. We note that similarly as in [7, 11], the bounds on all error terms will only
depend on the L2-norm of the initial condition, which in [7, 11] is normalized by ‖φ̂0‖2

2 = 1.
The existence of the thermodynamic limit, as L → ∞, is obtained precisely in the same

manner as in [7, 8]. Let

�c−n
n,̃n ⊂ �n,̃n (4.33)

denote the subset of diagrams of crossing or nesting type. The number of graphs in

�c−n
2n̄ :=

⋃

n+ñ=2n̄

�c−n
n,̃n (4.34)

is bounded by 2n̄n̄!.
Thus, the sum of amplitudes associated to all crossing and nesting diagrams is bounded

by

∑

1≤n̄≤N

∑

π∈�c−n
2n̄

lim
L→∞

|Ampπ (f ;g; ε;η)|

< (N + 1)!ε1/5

(

log
1

ε

)4(

cη2ε−1 log
1

ε

)N

(4.35)
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noting that evidently, ‖f ‖2,‖g‖2 < C for f,g of Schwartz class, and recalling from (3.7)
that

‖J‖∞ ≤ 1, (4.36)

which in particular is the case for J (p) = (1 + eβ(E(p)−μ))−1 associated to a Gibbs state of
the free Fermi field, for all 0 ≤ β ≤ ∞.

4.6 Remainder Term and Time Partitioning

If at least one of the indices n, ñ equals N + 1, we first use

|E[ρ(N+1,̃n)
t (f ;g)]| ≤ (E[ρ(̃n,̃n)

t (g;g)])1/2(E[ρ(N+1,N+1)
t (f ;f )])1/2 (4.37)

by the Schwarz inequality (assuming without any loss of generality that n = N + 1). If
ñ ≤ N , the term E[ρ(̃n,̃n)

t (g;g)] admits a bound of the form (4.47) below.
To bound E[ρ(N+1,N+1)

t (f ;f )], corresponding to the remainder term in the Duhamel
expansion, we use the time partitioning method of [11]; see also [7]. To this end, we further
expand the remainder term into 3N additional Duhamel terms, and to subdivide the time
integration interval [0, t] into κ ∈ N equal segments

[0, t] =
κ⋃

j=1

[τj−1, τj ], τj = j t

κ
, (4.38)

whereby one obtains

f
(>N)
t = f

(N,4N)
t + f

(>4N)
t , (4.39)

where

f
(N,4N)
t :=

κ∑

j=1

4N−1∑

n=N+1

ei(t−τj )H
(1)
ω f̃

(n,N,τj−1)
τj , (4.40)

with

f̃
(n,N,τj−1)
s := V (1)

ω f
(n,N,τj−1)
s , (4.41)

and

f (n,N,τ)
s (p) := (iη)n−N

∫

Rn−N+1
ds0 · · ·dsn−Nδ

(
n−N∑

j=0

sj − (s − τ)

)

×
∫

du0 · · ·dun−Nδ(p − u0)

n−N∏

j=0

eisj E(uj )

×
n−N∏

�=1

ω̂(uj − uj−1)f (un−N). (4.42)
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Moreover,

f
(>4N)
t =

κ∑

j=1

ei(t−τj )Hω

∫ τj

τj−1

dsei(τj −s)H
(1)
ω f̃

(N,4N,τj−1)
s .

We note that writing (4.40) in the form
∑κ

j=1

∑4N−1
n=N+1 gn,j , we have

ρt (a
+(f

(N,4N)
t )a(f

(N,4N)
t ))

≤
κ∑

j,j ′=1

4N−1∑

n,n′=N+1

∣
∣ρ0(a

+(gn′,j ′)a(gn,j ))
∣
∣

≤
κ∑

j,j ′=1

4N−1∑

n,n′=N+1

1

2

[
ρ0(a

+(gn′,j ′)a(gn′,j ′)) + ρ0(a
+(gn,j )a(gn,j ))

]

≤ κ2(3N)2 sup
n,j

ρ0(a
+(gn,j )a(gn,j )). (4.43)

Thus, by the Schwarz inequality,

ρ
(N+1,N+1)
t (f ;f ) ≤ 2

[
R1(f, t) + R2(f, t)

]
, (4.44)

where

R1(f, t) := (3N)2κ2 sup
N<n<4N

1≤j≤κ

ρ0(a
+(f

(n,N,τj−1)
τj )a(f

(n,N,τj−1)
τj )) (4.45)

and

R2(f, t) := t2 sup
1≤j≤κ

sup
s∈[τj−1,τj ]

ρ0(a
+(f̃

(N,4N,τj−1)
s )a(f̃

(N,4N,τj−1)
s )). (4.46)

By separating terms due to decorated ladders from those due to crossing and nesting dia-
grams, one finds

lim
L→∞

E[ρ0(a
+(f

(n,N,τj−1)
τj )a(f

(n,N,τj−1)
τj ))]

= E

[∫
dpJ (p)|f (n,N,τj−1)

τj (p)|2
]

≤ ‖J‖∞E[‖f (n,N,τj−1)
τj ‖2

2]

≤ ‖f ‖2
2‖J‖∞

[
(cε−1η2)

(N !)1/2
+ ε1/5

(

log
1

ε

)4(

cη2ε−1 log
1

ε

)8N]

(4.47)

for N < n < 4N (see [7, 11] for a detailed discussion).
For n = 4N , the main issue is to control the large factor t2 in (4.46). To this end, we

observe that for a time integral on the interval [τj−1, τj ] of length t
κ

, the parameter ε = t−1

can be replaced by κε = ( t
κ
)−1. Therefore, one gets

lim
L→∞

E[ρ0(a
+(f̃

(N,4N,τj−1)
s )a(f̃

(N,4N,τj−1)
s ))]
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≤ ‖J‖∞E[‖f̃ (N,4N,τj−1)
s ‖2

2]

≤ ‖f ‖2
2‖J‖∞

[
((4N)!)

κ2N

(

log
1

ε

)4(

cη2ε−1 log
1

ε

)8N]

. (4.48)

The gain of a factor κ−2N is crucial; it is sufficient to compensate for the factor t2 in (4.46),
using the parameter choice given in Sect. 4.7 below.

One obtains that if at least one of the indices n, ñ equals N + 1,

lim
L→∞

|E[ρ(n,̃n)(f ;f )]|

≤ ‖f ‖2
2‖J‖∞

×
[

N2κ2(cε−1λ2)

(N !)1/2
+

(
N2κ2ε1/5 + ε−2κ−2N

)
((4N)!)

(

log
1

ε

)4(

cλ2ε−1 log
1

ε

)8N]

,

(4.49)

where κ remains to be chosen. The first term on the right hand side of (4.49) bounds the
contribution from all basic ladder diagrams contained in the Duhamel expanded remainder
term. For a detailed discussion, we refer to [7, 8, 11].

4.7 Choosing the Constants

We recall from (4.36) that ‖J‖∞ ≤ 1. Moreover, ‖f ‖2, ‖g‖2 < C for all test functions f ,
g ∈ S(Td). As in [7, 8, 11], we choose

t = 1

ε
= T

η2
,

N = log 1
ε

10 log log 1
ε

, (4.50)

κ =
(

log
1

ε

)15

.

Then,

ε−1/11 < N ! < ε−1/10,
(4.51)

κN > ε−3/2

and consequently,

(4.35), (4.48) < η1/15 (4.52)

and

(4.49) < η1/4 (4.53)

for η sufficiently small. It follows that the sum of all crossing, nesting, and remainder terms
is bounded by η1/20.
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4.8 Resummation of Decorated Ladder Diagrams

Let �
(lad)
n,̃n ⊂ �n,̃n denote the subset of all decorated ladders based on n + ñ vertices. Then,

for T > 0, let

	
(2;η)

T (f ;g) :=
N(ε(T ,η))∑

n̄=0

∑

n+ñ=2n̄

∑

π⊂�
(lad)
n,̃n

lim
L→∞

Ampπ (f ;g; ε(T , η);η) (4.54)

with ε(T , η) = η2

T
. In the kinetic scaling limit η → 0 with t = 1

ε
= T/η2, one obtains

	
(2)
T (f ;g) := lim

η→0
	

(2;η)

T (f ;g) =
∫

dpFT (p)f (p)g(p), (4.55)

where

FT (p) := lim
η→0

F
(η)

T (p)

= e−2πT
∫

du(E(u)−E(p))

∞∑

n̄=0

∫

R
n̄+1+

dS0 · · ·dSn̄δ

(

T −
n̄∑

j=0

Sj

)

×
∫

du0 · · ·dunδ(p − u0)

(
n̄∏

j=1

2πδ(E(uj ) − E(uj−1))

)

F0(un), (4.56)

with initial condition

F0(u) = lim
L→∞

J (u�∗
L
) = lim

L→∞
1

Ld
ρ0(a

+
u�∗

L

au�∗
L

) (4.57)

(for the definition of u�∗
L

, see Theorem 3.1). It can be straightforwardly verified that (4.56)
is a solution of the Cauchy problem for the linear Boltzmann equation (3.12), as asserted in
Theorem 3.1.

5 Proof of Theorem 3.2

Because both K (in the definition of ρ0) and the random Hamiltonian Hω are bilinear
in a+, a (of the form

∫
du1du2k(u1, u2)a

+
u1

au2 ), the same is true for

K(t) := eitHωKe−itHω , (5.1)

with probability 1. Therefore,

ρt (·) = 1

ZK

Tr(e−K(t)(·)) (5.2)

is quasifree with probability 1 (see, for instance, [3]). Thus, for r, s ∈ N,

ρt (a
+(f1) · · ·a+(fr)a(g1) · · ·a(gs)) = δr,s det

[
ρt (a

+(fj )a(g�))
]r

j,�=1
, (5.3)
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where fj , g� ∈ S(Td) belong to the Schwartz class. In particular, we can set r = s.
We expand the determinant into

det
[
ρt (a

+(fj )a(g�))
]r

j,�=1

=
∑

s∈Sr

(−1)sign(s)

r∏

j=1

ρt (a
+(fj )a(gs(j))), (5.4)

where Sr is the symmetric group of degree r . We claim that for T > 0 and t = T

η2 , and any

choice of fj , g� ∈ S(Td),

lim
L→∞

∣
∣
∣
∣
∣
E

[
r∏

j=1

ρT/η2(a+(fj )a(gs(j)))

]

−
r∏

j=1

E[ρT/η2(a+(fj )a(gs(j))]
∣
∣
∣
∣
∣
< ηδ, (5.5)

for a constant δ > 0 independent of r , s ∈ Sr , η, and T , and for η > 0 sufficiently small.
This immediately implies that, for every fixed r < ∞,

lim
L→∞

∣
∣
∣E

[
ρT/η2(a+(f1) · · ·a+(fr)a(g1) · · ·a(gr))

]

− det
[
E[ρT/η2(a+(fj )a(g�))]

]r

j,�=1

∣
∣
∣ < r!ηδ (5.6)

converges to zero as η → 0.
This implies that

	
(2r)
T (f1, . . . , fr;g1, . . . , gr )

:= lim
η→0

lim
L→∞

E[ρT/η2(a+(f1) · · ·a+(fr)a(g1) · · ·a(gr))] (5.7)

is quasifree, i.e.,

	
(2r)
T (f1, . . . , fr;g1, . . . , gr ) = det

[
	

(2)
T (fi;gj )

]
1≤i,j≤r

, (5.8)

where

	
(2)
T (f ;g) =

∫
dpFT (p)f (p)g(p). (5.9)

The function FT (p) solves the linear Boltzmann equation with initial condition F0(p), as
given in Theorem 3.1.

5.1 Proof of (5.5)

The inequality (5.5) follows from a straightforward application of the main results in [8]
where we refer for details. In this section, we shall only outline the strategy. The expectation

lim
L→∞

E

[
r∏

j=1

ρt (a
+(fj )a(gs(j)))

]

(5.10)
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Fig. 2 Order r Feynman graph. The particle line indexed by j = 3 is disconnected

can be represented by a graph expansion as follows. We expand each of the factors

ρt (a
+(fj )a(gs(j))) =

N+1∑

n,̃n=1

∫
dpJ (p)f

(n)
j,t (p)g

(̃n)

s(j),t (p) (5.11)

separately into a truncated Duhamel series of level N , using the same definitions as in (4.16).
For the remainder term (where at least one of the indices n, ñ equals N + 1), we subdivide
the time integration interval [0, t] into κ pieces of length t

κ
.

For the expectation (5.10), we introduce the following extension of the classes of Feyn-
man graphs discussed for the proof of Theorem 3.1, see also Fig. 2. For r > 1, we consider
r particle lines parallel to one another, each containing a distinguished ρ0-vertex separating
it into a left and a right part. Enumerating them from 1 to r , the j -th particle line contains nj

interaction vertices on the left of the ρ0-vertex, and ñj interaction vertices on its right. We
note that for r > 1, only

∑r

j=1(nj + ñj ) has to be an even number, but not each individual

n̂j := nj + ñj . (5.12)

On the j -th interaction line, we label the propagator lines by momentum variables
u

(j)

0 , . . . , u
(j)

n̂j +1, with indices increasing from the left.
A contraction graph of degree {(nj , ñj )}r

j=1 is obtained by connecting pairs of interaction
vertices by contraction lines. We denote the set of contraction graphs of degree {(nj , ñj )}r

j=1
by �{(nj ,̃nj )}r

j=1
. If the �-th vertex on the j -th particle line is connected by a contraction line

to the �′-th vertex on the j ′-th particle line, we write

(j ;�) ∼π (j ′;�′). (5.13)
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To a graph π ∈ �{(nj ,̃nj )}r
j=1

, we associate the Feynman amplitude

Ampπ ({fj , gs(j)};η;T )

:= η2
∑

1≤j≤r (nj +ñj )e2rεt

r∏

j=1

∫
dαjdα̃j e

it (αj −α̃j )

×
∫

du
(j)

0 · · ·du
(j)

n̂j +1fj (u
(j)

0 )gs(j)(u
(j)

n̂j +1)J (u(j)
nj

)δ(u(j)
nj

− u
(j)

nj +1)

× δπ ({u(j)

i }n̂j +1
i=0 )

nj∏

�=0

1

E(u
(j)

� ) − αj − iε

n̂j∏

�′=nj +2

1

E(u
(j)

�′ ) − α̃j + iε
, (5.14)

where

ε = 1

t
= η2

T
(5.15)

for T > 0. The delta distribution

δπ ({u(j)

j }n̂j +1
j=0 ) =

∏

(j ;�)∼π (j ′;�′)
δ(u

(j)

� − u
(j)

�−1 − (u
(j ′)
�′ − u

(j ′)
�′−1)) (5.16)

is the product of delta distributions associated to all contraction lines in π .

5.1.1 Completely Disconnected Graphs

The subclass

�disc
{(nj ,̃nj )}r

j=1
⊂ �{(nj ,̃nj )}r

j=1
(5.17)

of completely disconnected graphs of degree {(nj , ñj )}r
j=1 consists of those graphs in which

contraction lines only connect interaction vertices on the same particle line.
It is clear that

lim
L→∞

∑

0≤nj ,̃nj ≤N

j=1,...,r

∑

π∈�disc
{(nj ,̃nj )}r

j=1

Ampπ ({fj , gs(j)};η;T ) (5.18)

= lim
L→∞

r∏

j=1

N∑

nj ,̃nj =1

E

[∫
dpJ (p)fj,T /η2(p)gs(j),T /η2(p)

]

= lim
L→∞

r∏

j=1

(
E[ρT/η2(a+(fj )a(gs(j)))] + O(ηδ)

)
, (5.19)

according to our proof of Theorem 3.1. The term of order O(ηδ) accounts for the remainder

term associated to the j -th particle line (i.e., the terms involving E[ρ(nj ,̃nj )

T /η2 (p, q)] where at
least one of the indices nj , ñj equals N ). Thus, for any fixed r ∈ N, we obtain

lim
η→0

lim
L→∞

∑

0≤nj ,̃nj ≤N

j=1,...,r

∑

π∈�disc
{(nj ,̃nj )}r

j=1

Ampπ ({fj , gs(j)};η;T )
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=
r∏

j=1

	
(2)
T (fj ;gs(j)). (5.20)

That is, the sum over completely disconnected graphs yields the corresponding product of
averaged 2-point functions in the kinetic scaling limit.

5.1.2 Non-Disconnected Graphs

We refer to the complement of the set of completely disconnected graphs in �{(nj ,̃nj )}r
j=1

,

�n−d
{(nj ,̃nj )}r

j=1
:= �{(nj ,̃nj )}r

j=1
\ �disc

{(nj ,̃nj )}r
j=1

, (5.21)

as the set of non-disconnected graphs. It remains to prove that the sum over non-
disconnected graphs, combined with the remainder terms, can be bounded by O(ηδ), for
L sufficiently large.

The condition required in [8] for the estimate analogous to (5.5) to hold is that for the
initial condition φ0 (corresponding to the test functions fj , g� in our case) of the random
Schrödinger evolution studied in [8], a “concentration of singularity condition” is satisfied
(that is, singularities in momentum space are not too much “spread out” in the limit η → 0).
It states that in frequency space T

d ,

φ̂0 = φ̂
(reg)

0 + φ̂
(sing)

0 , (5.22)

where

‖φ̂(reg)

0 ‖∞ < c (5.23)

and

‖|φ̂(sing)

0 | ∗ |φ̂(sing)

0 |‖2 < c′η3/2 (5.24)

are satisfied uniformly in L, as L → ∞.
In the present case, we have to require that fj , g� satisfy the concentration of singularity

condition. This is, however, evidently fulfilled since fj , g� are η-independent Schwartz class
functions (in contrast, the initial states considered in [8] are of WKB type, and scale non-
trivially with η).

It is proven in [8] that the amplitude of every non-disconnected graph with nj , ñj ≤ N

for j = 1, . . . , r , is bounded by

sup
π∈�n−d

{(nj ,̃nj )}r
j=1

∣
∣Ampπ ({fj , gs(j)};η;T )

∣
∣ (5.25)

< ε1/5

(

cη2ε−1 log
1

ε

) r
2

∑r
j=1 n̂j

(

log
1

ε

)4r

, (5.26)

where we recall that ε = 1
t
= η2

T
for T > 0. This key estimate is a factor ε1/5 smaller than the

bound on the sum of disconnected graphs; this improvement is obtained from exploiting the
existence of at least one contraction line that connects two different particle lines; see [8].
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The number of non-disconnected graphs is bounded by

∣
∣�n−d

{(nj ,̃nj )}r
j=1

∣
∣ ≤

(
r∑

j=1

n̂j

)

! ≤ (2rN)!, (5.27)

where n̂j = nj + ñj . Therefore, the sum of amplitudes of all non-disconnected graphs with
0 ≤ nj , ñj ≤ N is bounded by

∑

1≤j≤r

∑

0≤nj ,̃nj ≤N

∑

π∈�n−d

{(nj ,̃nj )}r
j=1

∣
∣Ampπ ({fj , gs(j)};η;T )

∣
∣ (5.28)

≤ ((2rN)!)2ε1/5

(

cη2ε−1 log
1

ε

)rN(

log
1

ε

)4r

. (5.29)

Here we have estimated the sum over pairs 0 ≤ nj , ñj ≤ N , 1 ≤ j ≤ r , by another factor
(2rN)!, since #{(nj , ñj )}r

j=1|
∑

j n̂j = m} ≤ m!.

5.1.3 Duhamel Remainder Term

In case at least one of the indices nj or ñj equals N + 1, the following argument can be
applied. Clearly, from a Hölder estimate of the form ‖h1 · · ·hs‖1 ≤ ‖h1‖s · · · ‖hs‖s with
respect to E, we have

∣
∣
∣
∣
∣
E

[
r∏

j=1

ρ
(nj ,̃nj )

t (f ;g)

]∣
∣
∣
∣
∣
≤

r∏

j=1

E[|ρ(nj ,̃nj )

t (f ;g)|2r ] 1
2r . (5.30)

Here, we have used an exponent 2r instead of r because then, even for r odd, an absolute
value of the form |z|2r can be replaced by a product of the form zrzr , where z ∈ C.

We make a choice of constants

t = 1

ε
= T

η2
,

N = log 1
ε

10r log log 1
ε

, (5.31)

κ =
(

log
1

ε

)15r

,

similarly as in Sect. 4.7 of the proof of Theorem 3.1.
If nj or ñj equals N + 1, we can use the bounds (4.52) and (4.53).
If both n, ñ ≤ N , we use the a priori bound

∑

n+ñ=2n̄

∑

π∈�n,̃n

lim
L→∞

E[|ρ(n,̃n)
t (f ;g)|2r ] 1

2r (5.32)

<

[ 2r∑

�=0

(2r

�

)( (cη2ε−1)n̄

(n̄!)1/2

)�
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× ε1/5((2r − �)n̄)!
((

log
1

ε

)4(

cη2ε−1 log
1

ε

)n̄)2r−�] 1
2r

<
(cη2ε−1)n̄

(n̄!)1/2
+ η

1
10 . (5.33)

The factor (cη2ε−1)�n̄

(n̄!)� in [· · ·] accounts for � basic ladders on � copies of �disc
n,̃n , while the

remaining factor accounts for all other (not necessarily non-disconnected) contractions on
the remaining 2r − � particle lines; for details, see [7, 8, 11].

Let us without any loss of generality assume that n1 = N + 1. Then, keeping n1 fixed
and summing over the remaining indices ñ1 and nj , ñj , with j = 2, . . . , r , we find

∑

0≤n2,nj ,̃nj ≤N+1
j=2,...,r

r∏

j=1

E[|ρ(nj ,̃nj )

t (f ;g)|2r ] 1
2r

< η
1
15

[
N∑

n̄=0

(cη2ε−1)n̄

(n̄!)1/2
+ η

1
10

]2r−1

, (5.34)

where the factor η
1

15 accounts for the remainder term indexed by n1 = N + 1. We conclude
that the sum over all terms (5.30) which contain at least one nj or ñj equalling N + 1 (i.e.,
which contain at least one Duhamel remainder term) can be bounded by

Crη
1
15 (5.35)

for a constant C independent of η and r .
Combined with

(5.28) < η
1
20 , (5.36)

which one easily verifies, this completes the proof of Theorem 3.2. For more details address-
ing the arguments outlined here, we refer to [8].
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